Role of random edge-disorder on the transport properties of ultra-thin zig-zag graphene nanoribbons

نویسندگان

  • J P C Baldwin
  • Y Hancock
چکیده

We report on an introductory study used to gauge the significance of random weakedge disorder on the coherent transport properties of ultra-thin zig-zag nanoribbons (ZGNRs) beyond the simple (i.e., first nearest-neighbour) tight-binding approximation. Such extensions include up to third nearest-neighbour hopping in an extended tight-binding model, as well as a mean-field Hubbard-U . The effect of the random weak-edge disorder causes charge-carrier localization that reduces the conductance about the Fermi energy in all of the systems studied. In the non-interacting systems, the extended tight-binding model is found to be more robust against disorder due to the increased kinetic degrees of freedom. Localization effects from the random weak-edge disorder are found to compete with the mean-field Hubbard-U resulting in spin-dependent conductance properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Theoretical and Experimental Investigation of Optical Properties of ZnS Zig-Zag Thin Films

Zigzag ZnS thin films prepared by thermal evaporation method using glancing angle deposition (GLAD) technique. ZnS films with zigzag structure were produced at deposition angles of 0˚, 60˚ and 80˚ at room temperature on glass substrates. Surface morphology of the films w:as char:acterized by using field emission scanning electron microscopy (FESEM). The optical properties of the specimens were i...

متن کامل

Conductance of T-shaped Graphene nanodevice with single disorder

Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...

متن کامل

Conductance of T-shaped Graphene nanodevice with single disorder

Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...

متن کامل

Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons

We report the results of multi-scale modeling of ultra-narrow graphene nanoribbons (GNRs) that combines atomistic non-equilibrium Green’s function (NEGF) approach with semiclassical mobility modeling. The variability of the transport gap and carrier mobility caused by random edge defects is analyzed. We find that the variability increases as the GNR width is downscaled and that even the minimum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018